ON THE THEORY OF VIBRATIONAL RELAXATION OF DIATOMIC MOLECULES

M. N. Safaryan and E, V. Stupochenko
Zhurnal prikladnoi mekhaniki i tekhnicheskoi fiziki, No. 1, pp. 93-95, 1965

The relaxation of diatomic molecules (harmonic oscillators) in a relatively light inert gas, which plays the part
of a thermostat, is considered within the framework of classical mechanics. The gas-kinetic equation for the
distribution function of diatomic molecules is approximated by the Fokker-Planck equation in the space of the
energies of translational, rotational and vibrational motions on the assumption of strong nonadiabaticity of the
collisions. In the approximation discussed, relaxation processes with different degrees of freedom develop in-
dependently, although the characteristic times of these processes are quantities of the same order. The vibra-
tional relaxation time, expressed in terms of the gas-kinetic integral Q* 1,1) (T*), is obtained.

Studies of the vibrational relaxation of diatomic molecules are usually based on the assumption of steady-state equi-
librium with respect to the translational and rotational degrees of freedom. This is valid if the process of establishing
equilibrium is more rapid than the process of vibrational relaxation. However, in our case — heavy diatomic molecules
constituting a small impurity in a light inert gas (for example, Iz in He) — the characteristic times of all three processes
are quantities of the same order, and therefore they must be investigated jointly.

Henceforth, we shall assume that: a)the molecules and atoms interact according to the laws of classical mechanics;
b) the oscillations of a molecule are harmonic and in practice do not affect the moment of inertia of the molecule; c)
collisions between molecules and atoms are strongly nonadiabatic — during the collision the coordinates of the molecule
remain practically unchanged; d)during collision an atom interacts only with the nearest atom of a molecule.

The vibrational relaxation time in such a system can be fouad in the same way as the rotational (and translational)
relaxation times (see [1]). The Boltzrmann gas-kinetic equation for the distribution function of the molecules, correct to
terms ~ m/M inclusive (m and M are the mass of an atom of inert gas and the mass of an atom of the molecule) can be
replaced by the Fokker-Planck equation for the distribution function f(E;, Es Es, t) of the molecules in the space of the
transiational (Ey), rotational (Ep), and vibrational (Es) energies:
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Here Aj is the increment of the energy Ej upon collsion between a molecule and an atom of the inert gas; < AjAg >
is the result of the averaging over all the collisions of the molecules; 7 stands for the free time of the molecules; £° is the
equilibrium distribution function of the molecules corresponding to a temperature T of the light gas. The normalization

condition is
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where N is the number of molecules per unit volume. To a first approximation (m/M «1):
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where v is the velocity of the atom at infinity; x is its angle of deviation from the initial direction; p; is the momentum
of vibrational motion of the molecule before collision; « and B are the orbital and azimuthal angles of the momentum
increment vector of the light atom (the axis of the molecule lies along the z -axig) and vy is the angie betwegn the mo -
mentum vector of tie center of mass of the molecule and the momentum increment veetor of the light atom. Averaging
Ay over all the orientations of the molecule, we obtain:

By =0 for iz=k. (4)
Integrating Eq. (1) with respect to dE; and dE, from 9 to e for condition (4) and bearing in mind that
— 'Ey+ Es + E3
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we obtain for the distribution function of the molecules with respect to the vibrational energy & (Egt)
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Here Tyq is the initial temperature of the heavy gas. 1n order to calculate Bgg, in addition to averaging over the
Maxwellian distribution of the light gas, we must average the quantity A§ over all possible values of p.. We perform
this averaging in the phase space of the harmonic oscillator over a layer bounded by the surfaces
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assuming uniform distribution of the probability density of values of p; and r (here r is the equilibrium distance between
the atoms in the molecule, and K is a quasi-elastic (force) constant). We then obtain:
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2y > =1/3 we get:

With the aid of result (8) and the equality < cos
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Averaging on the right side (9) with respect to v and x requires a knowledge of the interaction potential for a mole-
cule and an atom of light gas; if we represent this in the form U = &y, ¢ (R/0yp), where &y and oy are certain param-
eters, and R is the distance between interacting atoms, we finally obtain (see [2] ):
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where o* & 1) (T®) is one of the reduced integrals o*(%3) used in calculating transport coefficients in the kinetic theory
of gases [2]; and n' is the concentration of the light gas. Multiplying (5) by Eg and integrating with respect to dEg from

0 to e, we obtain the relaxation equation for the average vibrational energy < Eg > :
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where T3 is the vibrational relaxation time.
Equating T3 with T, and 74, the rotational and translational relaxation times [1], we obtain
Tg == 273 = 27y . (13)

Thus, the vibrational, rotational and translational relaxation times are of the same order, and these processes may
be studied independently in an approximation that satisfies condition (4).

For a solid ball model
., 3 M
W= T (14)

where 7 ° is the free time of a molecule in the light gas, In this particular case the result coincides with the expression
for the vibrational relaxation time obtained by the Landau-Teller method using a solid sphere model and the quantum
mechanical transition probabilities for a harmonic oscillator in nonadiabatic collisions [3, 4] (the possibility of an inde-
pendent consideration of vibrational relaxation is not discussed in these papers).

In conclusion, we note that, as with translational and rotational relaxation in the system considered [1], the solution
of Eqs. (5) and (6) preserves the original form of the Boltzmann distribution throughout the relaxation process, the tem -

perature &, of the vibrational degrees of freedom varying according to tle law

03 (1) = T -}- (To—T)e "3, (15)
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