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The relaxation of diatomic molecules (harmonic oscillators) in a relatively light inert gas, which plays the part 
of a thermostat, is considered within the framework of classical mechanics. The gas-kinetic equation for the 
distribution function of diatomic molecules is approximated by the Fokker-Planck equation in the space of the 

energies of translational,  rotational and vibrational motions on the assumption of strong nonadiabatici ty of the 
collisions. In the approximation discussed, relaxation processes with different degrees of freedom develop in-  
dependently, although the characteristic times of these processes are quantities of the same order. The vibra- 
t ional relaxation t ime,  expressed in terms of the gas-kinetic integral @,(t, 1)(T*), is obtained. 

Studies of the vibrational relaxation of diatomic molecules are usually based on the assumption of steady-state equi-  

l ibrium with respect to the translational and rotational degrees of freedom. This is valid if the process of establishing 

equilibrium is more rapid than the process of vibrational relaxation. However, in our case - heavy diatomic molecules 

constituting a small impurity in a light inert gas (for example, Iz in He) - the characteristic times of all three processes 

are quantities of the same order, and therefore they must be investigated jointly.  

Henceforth, we shall assume that: a ) the  molecules and atoms interact according to the laws of classical mechanics; 

b) the oscillations of a moIeeule are harmonic and in practice do not affect the moment  of inertia of the molecule;  c) 
collisions between molecules and atoms are strongly nonadiabatic - during the collision the coordinates of the molecule 

remain practically unchanged; d) during collision an atom interacts only with the nearest atom of a molecule.  

The vibrational relaxation t ime in such a system can be fouad in the same way as the rotational (and translational) 
relaxation times (see [1] ). The Boltzmann gas-kinetic equation for the distribution function of the molecules, correct to 
terms ~ m/M inclusive (m and M are the mass of an atom of inert gas and the mass of an atom of the molecule)  can be 

replaced by the Fokker-Planck equat ion for the distribution function f(gl,  g2, g3, t) of the molecules in the space of the 
translational (El), rotational (E2), and vibrational (g3) energies: 

[ O] Oln/~ } , Ai - -AE~.  (1) 

Here Ai is the increment of the energy gi upon collsion between a molecule and an atom of the inert gas; < AiAk > 

is the result of the averaging over all  the collisions of the molecules; v stands for the free t ime of the molecules; f~ is the 
equilibrium distribution function of the molecules corresponding to a temperature T of the light gas. The normalizat ion 

condition is 

i l l / d E ,  dE, dE3= N (2) 

where N is the number of molecules per unit volume. To a first approximation (m/M << 1): 

IF E-1 X ]/" ~ sin @ sin ~ cos g (3) ~AI= ] / - - -~2 t rws in~-cOST A~-- ] / - ~  2my , 

A3= Pr 2mv sin X_Xcosa 
M 2 

where v is the velocity of the atom at infinity; X is its angle of deviation from the in i t ia l  direction; Pr is the momentum 

of vibrat ional  mot ion of the molecule  before collision; oL and ~ are the orbital and azimuthal  angles of the momentum 

increment  vector of the light atom (the axis of the molecule  lies along the z -axis) and 7 is the angle between the mo - 

mentum vector of me center of mass of the molecule  and the momentum increment  vector of the light atom. Averaging 

AiA k over all  the orientations of the molecule,  we obtain: 

Bi~ = 0 for i 5/= k.  (4) 

Integrating gq. (1) with respect to dE 1 and dE 2 from 0 to ~ for condition (4) and bearing in mind that 

1~ kT 

we obtain for the distribution function of the mole~cules with respect to the vibrational energy �9 (E3t) 
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#t OEa B~a ~ A- ~ (,5) 

with the condit ions 

( O(P q~ ~ ! N Ea (~;) 
B33 ~bt~-.~ -k -g~- /  E,=o, : = 0 ,  q) (P.'3, 0) = -k~7, exp kro  

Here T0 is the in i t i a l  tempera ture  of the heavy gas. In order to ca lcu la te  1~33, in addit ion to averaging over the 
Maxwel l ian  distr ibution of the light gas, we must average the quanti ty A] over a l l  possible values of Pr" We perform 

this averaging in the phase space of the harmonic  oscil lator over a layer bounded by the surfaces 

Pr -I- l-~-K (r --re)~ = (8---,- 0)  ( 7 )  
M 2 Ea -1-6 

assuming uniform distr ibution of the probabil i ty  density of values of Pr and r (here r e is the equi l ib r ium distance between 
the atoms in  the molecu le ,  and K is a quas i -e las t ic  (force) constant) ,  We then obta in:  

<p~=) / M = ~/~E~ . (8) 

w i th  the aid of result (8) and the equa l i ty  < cos ~ c, > = 1/3 we get:  

re 4 " 2  X 
Baa = Es "~-  -~ -  < rev ~ sm -~-  > . (9) 

Averaging on the right side (9) with respect to v and X requires a knowledge of the in teract ion potent ia l  for a mo le -  
cule  and an atom of light gas; if we represent this in the form U = 8= q'(R/ot2),  where st2 and o~  are cer ta in  pa ram-  

eters, and R is the distance be tween in te rac t ing  atoms, we f ina l ly  obtain (see [2] ): 

2 m k T a  *(I'I)(T*) ( '~e-- t ( re '~'/,'~ 
B ~  b~E3, b~ - -  3 M "% 4n~12 ~ \2---~-'T-] } (10) 

where ~* (1, 1) (T*) is one of the reduced integrals  .q* (l, s) used in ca lcu la t ing  transport coeff icients  in the k ine t ic  theory 

of gases [2]; and n is the concent ra t ion  of the light gas. Mult iplying (5) by E 3 and in tegra t ing  with respect to dE s from 

0 to 0% we obtain  the re laxa t ion  equat ion  for the average v ibra t iona l  energy < Ea > : 

oc 

<Ea (t)> = 1 Ea(l) (Ea, t) dEa (11) 

0 

in the usual form 

d <Ea) 1 k T  3 M t 
d ~  ----- - -  ~r--7 [<Ea(t)> - -  <Ea(oo)>], Ta---~ ba - -  2 re f~*(1,1) (T*) "~e (12) 

where r s is the v ibra t ional  re laxa t ion  t ime .  

Equating r s with r 2 and ~'1, the ro ta t ional  and t rans la t ional  re laxa t ion  t imes [1], we obtain 

"~a = 232 = 2~1 �9 (13) 

Thus, the v ibra t iona l ,  ro ta t ional  and t rans la t ional  re laxa t ion  t imes are of the same order, and these processes may 
be studied independen t ly  in an approximat ion  that  satisfies condi t ion  (4). 

For a solid ba l i  mode l  
3 M 

~ - -  - -  ,~ ( 1 4 )  
�9 3 - - - - -  2 re 

where r "  is the free t i m e  of a mo lecu l e  in the l ight gas. In this par t icular  case the result coincides with the expression 

for the v ibra t iona l  re laxa t ion  t i m e  obtained by the Landau-Te l l e r  method using a solid sphere model  and the quantum 
m e c h a n i c a l  t ransi t ion probabi l i t ies  for a ha rmonic  osci l lator  in nonad iaba t i c  coll isions [3, 4] (the possibility of an inde-  

pendent  cons idera t ion  of v ib ra t iona l  re laxat ion  is not discussed in these papers). 

In conclus ion,  we note that ,  as with t rans la t ional  and ro ta t ional  re laxa t ion  in the system considered [1], the soIution 

of Eqs. (5) and (6) preserves the or iginal  form of the Bol tzmann dis tr ibut ion throughout the re laxat ion process, the tem 

perature Qa of the v ibra t iona l  degrees of freedom varying according to the law 

03 ( t ) :  ~ T 5 (7 'o - -  T)  e -t/:~ . (15) 
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